Sols 4464-4465: Making Good Progress

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center Earth planning date: Monday, Feb. 24, 2025 Over the weekend Curiosity drove about 48 meters (about 157 feet) to the southwest, continuing to march along on our traverse past Texoli butte and Gould Mesa. I was on shift as the LTP today, and it […]

Feb 27, 2025 - 03:00
 0  0
Sols 4464-4465: Making Good Progress

2 min read

Sols 4464-4465: Making Good Progress

A grayscale, wide-angle photo from the Martian surface shows very rocky terrain in front of the rover leading to the horizon, where a series of distant buttes and gently sloped hills rise from the ground. Rocks of various shapes and sizes jut out from the soil in the foreground, some flat and smooth while others are heavily textured, and several show distinct layers. The soil surrounding them appears finely textured, and in many places looks wavy, as if sculpted at some point by wind or water.
NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on Feb. 23, 2025 — sol 4462, or Martian day 4,462 of the Mars Science Laboratory mission — at 21:43:37 UTC.
NASA/JPL-Caltech

Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center

Earth planning date: Monday, Feb. 24, 2025

Over the weekend Curiosity drove about 48 meters (about 157 feet) to the southwest, continuing to march along on our traverse past Texoli butte and Gould Mesa. I was on shift as the LTP today, and it was great to see the good drive progress, interesting workspace, and exciting stratigraphy that lies ahead.

Today’s two-sol plan includes contact science and a drive on the first sol, followed by untargeted remote sensing on the second sol. The Geology theme group got straight to work evaluating contact science targets, and decided on a nodular block named “Matilija Poppy” for APXS and MAHLI observations. Then the team turned their attention to the remote sensing activities. There are a variety of interesting rock textures near the rover, so the team spent some time planning Mastcam imaging and ChemCam LIBS activities to assess the diversity. Some blocks have polygonal fractures with raised ridges, while other blocks are more nodular or well-laminated. In addition to looking at the bedrock, Mastcam will document local troughs in the loose sand between blocks, to understand more recent surface processes. The team planned a ChemCam LIBS observation on one of the polygonal fractures at a target named “East Fork” and two long-distance ChemCam RMI mosaics of Gould Mesa to assess the distant stratigraphy. Then Curiosity will drive about 30 meters (about 98 feet) further to the south, and take post-drive imaging to prepare for Wednesday’s plan.

On the second sol Curiosity will take an autonomously selected ChemCam target, along with multiple environmental monitoring observations to search for dust devils, monitor atmospheric dust, and evaluate clouds. It was a pretty smooth day of planning, and it’s always nice to see how the team works together to accomplish a lot of great science. Looking forward to continuing to make great progress as we start climbing uphill again!

Share

Details

Last Updated
Feb 26, 2025

Related Terms

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow