Science in Orbit: Results Published on Space Station Research in 2024

NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions. […]

Feb 25, 2025 - 22:00
 0  0
Science in Orbit: Results Published on Space Station Research in 2024
4 Min Read

Science in Orbit: Results Published on Space Station Research in 2024

NASA astronaut and Expedition 71 Flight Engineer Jeanette Epps extracts DNA samples from bacteria colonies for genomic analysis aboard the International Space Station's Harmony module. The research work may help researchers understand how bacteria adapts to weightlessness and develop ways to protect space crews and humans on Earth.

NASA and its international partners have hosted research experiments and fostered collaboration aboard the International Space Station for over 25 years. More than 4,000 investigations have been conducted, resulting in over 4,400 research publications with 361 in 2024 alone. Space station research continues to advance technology on Earth and prepare for future space exploration missions.

Below is a selection of scientific results that were published over the past year. For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.

Making stronger cement

NASA’s Microgravity Investigation of Cement Solidification (MICS) observes the hydration reaction and hardening process of cement paste on the space station. As part of this experiment, researchers used artificial intelligence to create 3D models from 2D microscope images of cement samples formed in microgravity. Characteristics such as pore distribution and crystal growth can impact the integrity of any concrete-like material, and these artificial intelligence models allow for predicting internal structures that can only be adequately captured in 3D. Results from the MICS investigation improve researchers’ understanding of cement hardening and could support innovations for civil engineering, construction, and manufacturing of industrial materials on exploration missions.

European Space Agency astronaut Alexander Gerst is shown working the MICS investigation in a glovebag. He holds a small sample pouch inside the glovebag to perform cement solidification without risk of material spread. A tool rack, laptop computer, and stowage bags are shown behind him aboard the International Space Station.
European Space Agency (ESA) astronaut Alexander Gerst works on the Microgravity Investigation of Cement Solidification (MICS) experiment in a portable glovebag aboard the International Space Station.
NASA

Creating Ideal Clusters

The JAXA (Japan Aerospace Exploration Agency) Colloidal Clusters investigation uses the attractive forces between oppositely charged particles to form pyramid-shaped clusters. These clusters are a key building block for the diamond lattice, an ideal structure in materials with advanced light-manipulation capabilities. Researchers immobilized clusters on the space station using a holding gel with increased durability. The clusters returned to Earth can scatter light in the visible to near-infrared range used in optical and laser communications systems. By characterizing these clusters, scientists can gain insights into particle aggregation in nature and learn how to effectively control light reflection for technologies that bend light, such as specialized sensors, high-speed computing components, and even novel cloaking devices.

A fluorescent microscope image shows green and red dots scattered across a darker backdrop. Eight particle clusters are circled in a white border across the image. These are particle clusters identified by the researchers. Negatively charged particles are represented by green fluorescence, and positively charged particles are red. The clusters contain one red particle surrounded by green particles.
A fluorescent micrograph image shows colloidal clusters immobilized in gel. Negatively charged particles are represented by green fluorescence, and positively charged particles are red.
JAXA/ Nagoya City University

Controlling Bubble Formation

NASA’s Optical Imaging of Bubble Dynamics on Nanostructured Surfaces studies how different types of surfaces affect bubbles generated by boiling water on the space station. Researchers found that boiling in microgravity generates larger bubbles and that bubbles grow about 30 times faster than on Earth. Results also show that surfaces with finer microstructures generate slower bubble formation due to changes in the rate of heat transfer. Fundamental insights into bubble growth could improve thermal cooling systems and sensors that use bubbles.

High-speed video shows dozens of spherical bubbles growing on a surface. The bubbles grow from tiny reflection points to sizes large enough to overtake the image frame until they collapse.
High-speed video shows dozens of bubbles growing in microgravity until they collapse.
Tengfei Luo

Evaluating Cellular Responses to Space

The ESA (European Space Agency) investigation Cytoskeleton attempts to uncover how microgravity impacts important regulatory processes that control cell multiplication, programmed cell death, and gene expression. Researchers cultured a model of human bone cells and identified 24 pathways that are affected by microgravity. Cultures from the space station showed a reduction of cellular expansion and increased activity in pathways associated with inflammation, cell stress, and iron-dependent cell death. These results help to shed light on cellular processes related to aging and the microgravity response, which could feed into the development of future countermeasures to help maintain astronaut health and performance.

Two side-by-side fluorescent images compare cells exposed to microgravity (left) and Earth’s gravity (right). Both images feature cells stained with dye that highlights their nuclei in violet against a black background. The microgravity image shows dimmer staining and fewer cells, indicating reduced proliferation and reduced nuclei size. In contrast, the ground control image displays brighter staining with larger, more pronounced nuclei, reflecting healthier cell growth and proliferation under normal gravity conditions.
Fluorescent staining of cells from microgravity (left) and ground control (right).
ESA

Improving Spatial Awareness

The CSA (Canadian Space Agency) investigation Wayfinding investigates the impact of long-duration exposure to microgravity on the orientation skills in astronauts. Researchers identified reduced activity in spatial processing regions of the brain after spaceflight, particularly those involved in visual perception and orientation of spatial attention. In microgravity, astronauts cannot process balance cues normally provided by gravity, affecting their ability to perform complex spatial tasks. A better understanding of spatial processes in space allows researchers to find new strategies to improve the work environment and reduce the impact of microgravity on the spatial cognition of astronauts.

An MRI scan of a human brain shows brightly colored spots that indicate brain activity during spatial orientation tasks. The active regions are highlighted in shades of yellow, orange, and red to represent varying intensity. A large highlight covers the back of the brain, and there are smaller spots in the middle of the brain and towards the front. These regions correspond to specific areas of the brain that engage in spatial processing.
An MRI (magnetic resonance imaging) scan of the brain shows activity in the spatial orientation regions.
NeuroLab

Monitoring low Earth orbit

The Roscomos-ESA-Italian Space Agency investigation Mini-EUSO (Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory) is a multipurpose telescope designed to examine light emissions entering Earth’s atmosphere. Researchers report that Mini-EUSO data has helped to develop a new machine learning algorithm to detect space debris and meteors that move across the field of view of the telescope. The algorithm showed increased precision for meteor detection and identified characteristics such as rotation rate. The algorithm could be implemented on ground-based telescopes or satellites to identify space debris, meteors, or asteroids and increase the safety of space activities.

The Mini-EUSO rectangular casing is shown during assembly and the engineering hardware can be seen on the inside. Near the middle of the rectangular structure is a six-by-six grid—this is the photomultiplier, or light detecting mechanism of the telescope. Wires and brackets are connected to the back of the photomultiplier unit.
The Mini-EUSO telescope is shown in early assembly.
JEM-EUSO Program

For more space station research achievements and additional information about the findings mentioned here, check out the 2024 Annual Highlights of Results.

Destiny Doran

International Space Station Research Communications Team

Johnson Space Center

What's Your Reaction?

like

dislike

love

funny

angry

sad

wow